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J. Phys. A: Math. Gen. 18 (1985) 2685-2690. Printed in Great Britain 

The Fokker-Planck equation with absorbing boundary 

P Dij i  
Institute of Physics and Nuclear Engineering, PO Box MG6, Bucharest, Romania 

Received 7 March 1985, in final form 25 April 1985 

Abstract. An analytic solution of the stationary one-dimensional Fokker-Planck equation 
with absorbing boundary is explicitly constructed. 

1. Introduction 

The purpose of this paper is to solve the stationary one-dimensional Fokker-Planck 
equation 

subject to the boundary condition 

f(0,U) = 0, U E [O, CO). (1.2a) 

In (l.l), f(x, U )  is the distribution function of a Brownian particle of mass m, 5 is 
the friction coefficient, a = kT/ m is supposed to be constant, x and U are the position 
and velocity coordinates. The case studied here is that of a motion in a half-space 
x 3 0 bounded by a plane wall at x = 0. 

In this form the problem was raised by Wang and Uhlenbeck (1949, but until now 
only approximate numerical solutions have been published (Harris 1981, Burschka 
and Titulaer 1981). 

The boundary condition ( 1 . 2 ~ )  is not sufficient for obtaining an unique solution 
as it will become clear from what follows, and it must be supplemented by a condition 
at x =CO, which we take as 

f(x, U)+ h ( x ,  U )  as X+CO (1.2b) 

where h ( x ,  U )  = (x - ul-') exp(-u2/2a) is the diffusion solution found by Pagani 
(1970). 

Exactly solvable problems in which a kinetic boundary layer occurs are extremely 
rare and then the solving proceeds in two steps. One constructs first a set of stationary 
solutions which are complete on a half-range interval and secondly one combines them 
in order to fulfil the boundary conditions. 

The paper is organised as follows. The construction of a complete system of 
functions on the half-range interval [0, CO) is given in 4 2. This system is used in 4 3 
for obtaining the analytical solution of the problem (1.1)-(1.2). The paper ends with 
some conclusions. 
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2. Construction of a complete set of functions on the half-range interval 

It is useful to make the following transformation 

f(x, = exp(-t2/2)g(x, t )  

where f = (2a)-'l2u. 
Equation (1.1) takes the form 

Solutions of (2.1) can be obtained if we make the ansatz 

g(x, t )  = exp(-A,x)h(t). 

We get for h ( t )  the differential equation 

L(-$+( t2- l )h)  2t  = A h  

where A = (2a)'/25-'Al. 
Two independent solutions of (2.2) are D A 2 / 2 ( & (  t - A ) )  and D-A2/2-l( ih(  t - A ) ) ,  

where D,( z )  denotes the parabolic cylinder function. 
In order to have a functional calculus, i.e. spectral decompositions, expansion 

theorems and so on, we have to supplement (2.2) with suitable boundary conditions. 
The relations (1.2) do not impose a definite boundary condition upon h ( t ) .  However 
they suggest looking at the differential operator (2.2) on the half-range interval (0, a). 
Consequently we make the change of variable 

t=Js (2.3) 

and (2.2) takes the form 

We remark that the transformation (2.3) has changed the differential equation (2.2) 
into a standard formally self-adjoint Sturm-Liouville problem. Thus, with suitable 
boundary conditions, the differential operator 

L, = -(d/ds)(2& d/ds)  ++(&- 1/&) (2.5) 

will provide us with a complete system of orthonormal functions, which will be a 
necessary ingredient in solving the problem (1.1)-(1.2). 

Two bdepepdent  solutions of (2.4) for A = i are y, = D-, / , (&- ih)  and y, = 
D-,,2(i42s+42).  From the asymptotic behaviour of D J z )  we conclude that y I e  
L2(0 ,  a) and y, E L2(0, CO), so that L, has deficiency indices ( 1 , l ) .  Thus L, will become 
self-adjoint if we impose one boundary condition at the non-singular end s = 0. The 
general form of this boundary condition is 

(2.6) 

By imposing (2.6) we get for each a a self-adjoint extension, each extension 
providing us with a complete set of functions. Since for solving the problem (1.1)-(1.2) 
it is sufficient to know one complete system, we have freedom in choosing the 

- 
y(0) COS a -24s  dy/dsl,=, sin a = 0, a E [O, 27r). 
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parameter a. The operator L, subject to the boundary conditions (2.6) having a discrete 
spectrum, our choice is (Y = 0, which gives the simplest eigenvalue equation. 

In the following we will find the spectrum and the eigenfunctions of the differential 
operator L, subject to the boundary condition 

y ( 0 )  = 0. (2.7) 

The spectrum of the operator (2.5)-(2.7) is determined by the Weyl’s m function 
(Titchmarsh 1962). In order to find it we construct two solutions of (2.3), u(s, A )  and 
U( s, A ) ,  which satisfy the boundary conditions 

u(0 ,  A )  = 1 ,  2& u‘ (s ,  A ) ( s = O =  - 1  

and 

u ( 0 ,  A )  = 1 ,  2 4 s  ~ ‘ ( s ,  A ) I , = o = j .  
They are 

u ( s ,  A )  = i 2 -11~  e x p ( r r ~ ~ i / 4 ) [ ~ - , 2 ~ ~ - , ( - i ~ h ) ~ , 2 ~ ~ ( ~  -A&) 

u ( s ,  A )  = i exp( . rr~~ i /4 ) { [ i~ ’ ,2 / , - , ( - i~&)  - 2 - 3 / 2 ~ _ , 2 / 2 - 1 ( - i ~ J i ) ~ ~ A 2 / 2 ( ~  - A&) 

- D~2/r(  - A h )  D - h 2 , 2 - 1 (  i& - i A h ) ]  

+[2-3’2D~2/2(-h42) - D ~ 2 , 2 ( - A ~ ~ ) ] D - ~ 2 / 2 - l ( i ~  - i A h ) }  

(DXz)  = (d/dz)D,(z)).  

The m function is determined by the condition u ( s ,  A ) +  m ( A ) u ( s ,  A )  E L2(0, CO).  

Taking into account the asymptotic behaviour of D, ( z )  we find 

The singularities of m ( A )  on the real line give the spectrum of the operator. 
The function D,(z) is an entire function of both v and z, so that DA2/ , ( -Ah)  is 

an entire function of A. Thus (2.8) can be written 

 AI = $ +Ji c (A, - A 1-1  

D,~,*(-A&) = 0. (2.9) 

fl 

where the summation is over all n for which A, is a root of the equation 

The m function (2.8) being meromorphic, the spectrum is discrete and the eigen- 
values A, are simple. The residue at the pole A = A ,  is & and consequently the 
orthonormal eigenfunctions are 

The spectrum of the operator (2.5)-(2.7) is positive although this is not evident 

We do not produce a direct argument showing that (2.9) has no roots for A CO, 

First we remark that A = 0 is not an eigenvalue. By the transformation 

from the eigenvalue equation (2.9). 

but use an indirect method. 

y ( s )  = u-1’6u(u)  



where U = s3I4, (2.4) can be written in the form 

d2y/dU2+[$A - ~ ( u ) ] u = O  
where q (  U )  = $( u213 - u-2/3) -2 36u -2 . 

(2.11) 

Now we can use the results of chapter 5 from Titc..marsh book (1962). By the 
above transformation the end U = 0 is becoming singular, but since 4 (  U )  > - : u - ~  + A, 
for U sufficiently close to zero, the results are the same as if there were no singularities 
at U = O .  When q ( u ) + c o  as u + m ,  which is precisely our case, there are discrete 
eigenvalues and the eigenfunction associated with A, has n zeros. 

Up to constant factors the eigenfunctions of (2.1 1) are the functions (2.10) multiplied 
by u1I6 

U , ( U ,  A,) = U 1 ’ 6 4 : , 2 ( h ( U 2 ’ 3 - h n ) ) .  

We introduce the notation g(A) = DAzI2(-AJ2) and notice that g(0) > 0 and 
g ( h )  < 0. Thus we have at least one eigenvalue in (0, h) which we let be A,. On the 
other hand D,( z )  has [ v + 11 zeros on (-CO, CO), where [XI denotes the integral part of 
x (ErdClyi 1953). Since 0 < A, < h, [ 1 + Ai/2] = 1 and we conclude that U,( U, A,) has 
only one zero on the real line. However we know that this zero is at U = 0 since 
DAi12( -Ao&) = 0. 

Thus we have found that u,(u, A,) has no nodes on the interval (0, CO), i.e. A, is 
the eigenvalue which corresponds to the fundamental state. 

Since A,> O’the operator (2.5)-(2.7) is positive. 
The above arguments can be extended to show that 

(2n)”’ < A, < (2n + 2)’12 n = 1 , 2 , .  . . . 
A more precise estimate for A, can be obtained only for large n. From the asymptotic 

behaviour of D,(z) when both v and z are large (Abramovitz and Stegun 1964) we get 

A, = ( 2 r 1 + 3 / 4 ) ’ / ~ ( 1 + O ( l / n ) ) ,  n+co. 

3. Solution of the Fokker-Planck equation 

In the preceding section we have constructed a complete system on the half-range 
interval [0, cz)) of orthonormal eigenfunctions U , (  s, A,). Consequently the functions 

g,(x,  s) = e ~ p ( - s / 2 - 5 ( 2 ~ ) - ” ~ A , x ) u , ( s ,  A,,) n = o ,  1 , .  . * (3.1) 

are elementary solutions of the Fokker-Planck equation (1.1). Recalling that U = 
(2as)’12 the elementary solutions (3.1) can be written as 

&(X, s) = f n ( x ,  U )  

= 2-’14 exp(-u2/4a - 5 ( 2 a ) - ’ / ’ A , x )  

X D~;l2(a-~”V - A,,h)/D;;p( -A,&), n = 0,1, . . . . ( 3 . 1 ~ )  

Since D,(z) is an entire function of both v and z, f , ( x ,  U) are well defined in all the 
complex plane and ( 3 . l a )  makes sense for u < O .  

Since f , (x ,  U )  is a complete system, an arbitrary solution F ( x ,  U )  of (1.1) can be 
written 

( 3 . 2 ~ )  F ( x ,  0) = E  GlJfl(x, U). 
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If we try to satisfy the boundary condition (1.2a) 

F(O, ~ ) = C c J n ( o ,  u ) = O ,  
n 

we find that c, = 0, i.e. the null solution. We remark that with the solution (3.2~1) we 
cannot satisfy the boundary condition (1.26). We can bypass this difficulty by adding 
to the independent set of functions { fn (x ,  u ) } ~ = ~ ,  one or more functions which are 
solutions of (1.1). In this way we obtain a linearly dependent system of functions and 
we can write an expansion like (3.2a) in which not all the coefficients are identically 
zero. If we add more functions we have to give supplementary boundary conditions in 
order to find a unique solution. The solution we propose here is, in some sense, 
minimal. We add only such a function to { f n ( x ,  U)}, and this function is the diffusion 
solution h ( x ,  U). 

Thus F ( x ,  U )  can be written as 

(3.26) ) 
W 

~ ( x ,  U )  = a h ( x ,  U)+ C cJn(x, U )  . ( n=O 

This function must satisfy the boundary conditions (1.2a)-(1.26). From (1.26) we get 
a = 1, and from (1.2a) 

5 

F ( 0 ,  U )  = -U[-' exp(-u2/2a)+ cJn(O, U )  =O. 
n = O  

For U 3 0 the above relation can be written 

f' c,un(s, A,,) = 5-'(2as)'/* e-''* 
n=O 

whence we obtain 

c, = [-'(2.)' /2 e - s / 2 u n ( s ,  A,)  ds  

Instead of using the boundary condition (1.26), we may use, alternatively, the 
asymptotic behaviour of the particle density, or the particle flux as x .+ W. 

The formula (3.26) with a = 1 and c, given by (3.3) is our solution of the Fokker- 
Planck equation with absorbing boundary. A numerical computation of the solution 
will be given elsewhere. 

n = 0,1, . . . lo= 

4. Conclusion 

In this paper we have found a method for obtaining an analytic solution to a boundary 
value problem that, until now, has resisted all attempts to solve it. 

It is easily seen that our method can be applied to a large class of kinetic equations, 
that by separation of variables lead to a Sturm-Liouville operator like (2.2). In most 
cases, although the problems are indefinite, the boundary conditions allow them to be 
treated as definite ones. This is precisely our case here, where the operator ( 2 . 2 )  is 
not definite on the whole interval (--CO < U <CO), but on the half-range interval [0, CO), 

suggested by the boundary conditions (1.2), it becomes definite, and we could apply 
the standard methods for solving the problem. 
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The method can be used to solve kinetic equations with a boundary condition like 
f(0, U )  = cp( U )  for U > 0. Work in this direction is in progress. 
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